Image by Miguel Á. Padriñán from Pixabay 

The “Most likely” Approach

Anyone who has been to a doctor’s appointment and had them prescribe medications or treatment unique to their ailments knows that medicine has always been a personal matter to some degree. Still, regimens and diagnostics are largely dependent on population-based averages regardless of vast human diversities which means that medicine somewhat remains a game of probability. This “most likely” approach to treatment leads to variations in responses due to the distinctive genetic make-ups of individuals[1]. As such, only one in four patients responds to cancer chemotherapy treatment, just above 50% of liver transplant patients survive for 7 years[2], and major depressive disorder (MDD) can only be treated by trialing different antidepressants[3].

The emergence and development of personalized medicine attempts to address the need for a more tailored approach to treatment by directing attention towards the less than 1% of DNA that differentiates one person from another. Thus, at the intersection of healthcare and technology, personalized medicine presented a revolutionary breakthrough with the potential to change disease care as we know.

Obstacles in the Healthcare Industry

If personalized medicine holds so much promise, why is it not commonplace in the healthcare industry? This can be attributed to the barriers of increasing and disorganized healthcare data, a lack of specialists, and the long and expensive road to drug development[4]. Here, artificial intelligence (AI) meets medicine to make personalized healthcare an avenue available for organizations and to the masses. In response to healthcare data growth (predicted to increase by 43% in 2020[4]), AI can employ its deep learning abilities to make medicine more evidence-based. AI also holds potential in a hospital or clinic settings through its ability to function as assistants to healthcare providers to maximize efficiency. Lastly, in addressing the complications of drug development, AI supersedes the fundamental challenges of determining drug composition and drug dosage yielding the highest effectiveness and applying these doses by means of weight or by determining the maximum tolerated dose[5].

The traditional drug development process is not optimal which recent research has set out to rectify. By utilizing a feedback system control based on AI and search algorithms, the Ho-Systems Laboratory was able to use an approach named “artificial intelligence-parabolic response surface” to pinpoint which individual drugs worked together for a patient out of billions of possible combinations[5]. From a broad perspective, AI accelerates the drug development process and cuts costs substantially while producing more accurate results.

Image by Arek Socha from Pixabay 

Personalized Solutions for the New Era of Medicine

The concept of personalization has dominated much of modern life; from curated ads on social media to the most inconsequential objects like mugs or stationary to suit individual needs. Where healthcare is concerned, the prospect of providing tailored treatments to acknowledge the differences between one person and the next makes perfect sense; an adolescent boy and an elderly woman would not even buy the same shoes much less receive the same medical care. By unlearning the ‘one-size-fits-all’ stance, the future of AI and personalized medicine can propel to great heights with wearable devices, digitized healthcare data, and superior patient history knowledge, all serving to improve and save lives.

Learn more: